
NASA TT F-14, 6 3 7

NASA TECHNICAL TRANSLATION

(NASA-TT-F-14637) A VORTEX SODEL FOR

THE STUDY OF THE FLOW AT THE ROTOR

BLADE OF A HELICOPTER W.H. Isay

(Scientific Translation Service) 
Dec.

1972 45 p CSCL 01B

N73-13014

Unclas
G3/02 49391

A VORTEX MODEL FOR THE STUDY OF

THE ROTOR BLADE OF A HELICOPTER

W. H. Isay

Translation of:

der Strbmung am

Zeitschrift fUr
Vol. 52,

"Ejn Wirbelmodell ZUr Behandlu11

EiRotorblatt eines Hubschraubers,

angewandte -athematik und Mechanik,

June, 1972, PP 283 - 309.

NATIONAL AERONAUTICS AND SPACE

WASHINGTON, D. C. 20546

ADMINISTRATION
DECEMBER 1972

r



A VORTEX MODLE FOR TREATING THE FLOW ON

ROTOR BLADES OF A HELICOPTER

W. H. Isay

ABSTRACT. On the base of unsteady vortex lifting-line
theory an approximate method to calculate the loading distribu-
tion on rotor blades in forward flight is presented. The
theory takes account of the vortex wake geometry for non-uniform
(example trapezoidal)!flow through the rotor-disc as well as the
effect of rolling up and contraction of free tip- and root-
vortices is considered. Calculating the blade-circulation
distribution Frqu--ires careful attention to the case where the
blades pass through the rolled-up tip- and root-vortex of the
foregoing foil.

The appendix of this paper is concerned with the
preparation of formulas to predict the compressible acoustic
pressure field of the rotor.

1. INTRODUCTION AND SUMMARY /283

Various approximation methods are given in the literature [1], [2], [3]

for calculating the flow on rotor blades. They can be used for various (periodic

or aperiodic) flight conditions, depending on the factors -ignored. Thel-,

available results are not completely satisfactory for any of these methods, and

it therefore seems desirable to improve the method by considering, effects which

have not been considered up to the present.

The linearized extended lifting line theory has been developed in the most

consistent way as far as the theoretical aspects are concerned. This is true

Numbers in the margin indicate pagination in the original foreign text.
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even though the simplifications which it contains (ignoring the deformation of the

free vortex surfaces due to the nonuniform rotor flux and the flapping motion of

the blades, contraction and rolling-up process of the free transverse vortices,

the oblique and reverse flow at the blades for large propeller moduli) means that

there is a considerable abstraction of physical reality [1], [2], [3].

In the present paper, a modified vortex model is given on the basis of the

lifting line theory. This makes it possible to include some effects which were

not included in previous analyses. Among these, we have the nonuniform flow

through the rotor plane. In particular, we will now investigate the influence of

the rolled-up and contracted tip and hub vortices of the leading blade have on

the lift distribution of a blade.,in the 'case where the considered target blade|

passes through them.

The flow boundary condition at the rotor blade leads to integral equations

with new types of singularities, and this paper will basically deal with the theory

of solution of these equations.

2. CONCEPT OF THE VORTEX MODEL

Let us assume that the rotor has N blades (n = 0,],...,N - )and that there is

a completely periodic flight state at the velocity w0ain the direction of the nega-4--

tive z axis. The blade n Ois assumed to be the target blade at which the flow

boundary conditions are to be satisfied. In this aircraft-fixed coordinate system,

let : = OJbe the rotor plane(1). Therefore uvol is the incident flow velocity in the

z direction. In addition, uo4 is an incident flow in the x direction ( u':w2I)

(Figure 1).

()We will either use Cartesian coordinates x, y, z or cylindrical coordinates
x, y = r cos 7, z = r sin i. In the same way, we will use s instead of r and !1
instead of. wI as the integration variable for vortex lines. >' is the angular velo-
city and n=0 +1 2 nl characterizes the instantaneous angular position of the
n-th blade. Rft and RJ are the inner and outer radii of the blade. Finally

v= uez +vey + wez = u e z - V e,,+ We!
1

refers to the absolute velocity referred to the aircraft-fixed coordinate system.
Otherwise, we will use the same notation of [1].
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Fig. 1. Coordinate system of the rotor Fig. 2. Trapezoidal flow.
(N = 4).

The free transverse and longitudinal vortices are located within an oblique /284

cylinder behind the rotor which extends to infinity, just like in the linearized

theory [1], [2], [3].

Assumptions regardjing the geometry of the free vortex surfaces will be made

for the individual rotor blades. Common assumptions will be made for the wake

regions as dictated by the physics of the problem.

Without considering the contraction and rolling-up process, a trapezoidal

flow through the rotor plane in the x direction, such as

k0 (8, ) = kOO + k0 1o sin p, k, = const; k,1 = const; (1)

to the free vortex surfaces having the shape (Figure 2).

rl -= k(8s, q, + p) e.+ 8 cos (q, +) ey + [8 sin (q. + F) + k* A e, (2)

where kwhere =const; (O < o; R _ 8 Ro) .
wo + wtv + WL Wo

,)8 + VQo + VL. 

For a constant flux, we may assume k = const. If there is no vortex motion

through the rotor plane in certain regions, then we must set k0 = 0 there.

The vortex axis vector of the free transverse vortices is given by _:dsai 

For the free longitudinal vortices it is ds- =+drs I
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i ',ongitudinal 

no flow; region 2: trape- vortex.
zoidal flow.

We will calculate the velocity field induced by the vortex system of the rotor

along the 3/4 profile cord line of the target blade. It is required to satisfy the

flow boundary conditions according to the extended lifting line theory (Figure 3).

The blades have the cord 2 r a(r), and their 3/4 line is given by x = 0;

y r cois ( + a) z = n a(n + /), pn = po + (2 a n/N) (n = 0
/
target blade).

a)

We will replace the blades by bound roduced by the vortices havingof the rion

(oas), n = O. 11 ... , N- 1,1 arranged in the rotor plane x = 0 at the i/4 blade cord

lineg The induced velocity field along the 3/4 line of the target blade is then

given by

1 Ie~Vql f i

ly=7008 zo =rsin (~- +oOq =qo+(2nN = _nO tg b l(ad e 2zn 01 ).

b)

We will select the following mades by bound rod vortices havingfor the citransverse vortex

For the blade n = (target blade) it is assumed x that the transverse vortices

remain behind the blade up to about 1/4 line of the blade cord (that is up to the 2anremain behind the blade up to about 1/4 of the blade cord (that is up to -2nl
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without flowing through the blade plane x = 0 (linearized wing theory). After

this, they leave the rotor plane (Figure 4) according to the trapezoidal flow dis-

tribution (1).

For the other blades (n # 0), it is assumed that the transverse vortices have

already been rolled up into a tip vortex (intensity.+ rP,( + V),jat '8 8() < Ro)l, and

that there is a hub vortex (intensity - rn (i + )l, located at s = 8I) > RL)l. mJ is

the maximum value of the bound circulation which corresponds to the instantaneous

angular position hi + P of the blade.(2) The radii s(1 and I8NJ can be adjusted without /285

difficulty to a wake contraction obtained from experiments. (Figure 5).

For the blade n =N -1,1 which preceeds the target blade being considered, we

will assume that the tip and hub vortices remain approximately 1/4 blade chord

behind the target blade in the rotor plane (Figure 6) and only then do they become

pushed away corresponding to the trapezoidal flow (1). This vortex model also

corresponds to the experience that the tip and hub vortices of the preceding blade

n_= N - 11 greatly influences the flow conditions at the blade n = 0 being inves-

tigated. Often the latter passes through these rolled-up free vortices. One topic

of this paper is to investigate this penetration effect and its influence on the

lift distribution of a rotor blade. The vortex geometry described above is found

to be especially suited for this purpose.

For the other blades n = 1 to n = N --21we initially assume a flux according to

equation (1) for the tip and hub vortices. The influence of these vortees on the

lift distribution at the blade n = 0 is smaller and penetration effects will hardly

occur.

Under these conditions, one finds that the velocity field induced by the free

transverse vortices at the 3/4 line of the target blade ~x 0,y - r cos(0 + (P

r sin( + a) is given by:

(2)Instead of the maximum value, another circulation value can be substituted for
f'rJ, which is better suited to the true flow conditions (for example, one taken
from measurements). Instead of a trapezoidal distribution, any other flow distri-
bution can be used.
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Fig. 6. Tip and hub vortices Fig. 7. a) Definition b) Blade crosls sec-
of the blade n = N - 1. Region of the flapping angle, tion r = const.

1: no flow, region 2: trape- assumed,
zoidal flow. Same for longi-
tudinal vortex.
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= with xi0Ll (¶l-ipC))-4x) (8 L;9 2r with j = _k ) -N +); similarlyl xf_jy , N-2 ko N-2 ; ^90 - - + -

$ i, .-- = 2: ' rm (vn + to) [(,(4°))2 + ((r COS (q)o + ±) - COg (q,. + y))2 +

"- k, r cos (97o + a) + k* s8,) cos (n, + V) + , 817 )% sin (+n + p) e, +

+ [(s) sin ( + )-r 8in ( + + )-,,* i) a x(O)- (k + 8n Cos (q +% )) e +

+[(r cos (9q) + oc) 8(n°) cos (,n. + V)) ~a~ (® ) - s ) osin (,Pn ±+ V) x ()] e -d _-
1 N-2 oo

rf , (, + v) [Integrand W jttjj ::M)] dP

,withi xO) = p ko (sRo) 9on + /) ; x= %- ko (i),,q I+ % p) .

I f f ar(8, ' 7, + V)
rg°)- = ~ J ar8 t + )[(r cos (TO + a) - 8 cos ('o + V)), +

+ (r 8sin (qO + a) -- sin (oo + p) - k, p)2]-s/2 [r 8 cos (a - ) - sa +
i + kd* r cos (poo + aO) -- k* s coS (9%o V') -- k,* 9 sin (q9o Vp)] de da ez +

ar (, 9 o + v) [(Xo)' + (r cos (9,o +) -8 COS (9pO + t/)) +±

+* ' (r sin (po + a) - 8 sin (9o0 + tp) - k,* 2)2]-3/2 X
X {[r 8 Cos (%-- %) -s2 + k* r cos (o + a) -k* 8s cos (0o +') - k* s y sin (qo + 0)1 ez +

+ [(r sin (po + a) - ssin (97o + o)-k,* ) a°r + (k*, + s -os (p + Vr)) xo]ev +

+ [(s cos (9'o + t) - r cos (poo + a)) a° + e sin (c9o + p) xo] e, dV ds

with Ixo, = (y - 2) ko (R, o + Vt) -I

In formula (4), To°)l and o(Hi)indicate the angles at which the tip and hub vortices

of the blade n = N- l lintersect the 3/4 line of the target blade n = 0. The cor-

responding radii are called r0 and r
i
. According to our definition we then have

(Figure 6; Figure 8):

°o ( (9o +a°) -l COS(9' - + .);

r cos (%9 + ) = 8aLI cos. 'oPNO + <);

ro sin (o0o + ao) =8NLi x sin (9go + ) + k, =do);

7



c) /287

For the free longitudinal vortices we will assume the following model: for

the blade n = 0, the vortices are arranged in the rotor plane up to 1/4 of the blade

chord behind the blade (that is, up to = 2& ) (linearized wing theory). After

this they leave the plane x = 0 (Figure 4) according to the trapezoidal flux dis-

tribution (Equation 1).

The longitudinal vortices of the blades n = 1 to n -.2-21 , which do not have

a large influence on the flow boundary conditions, are extended after their crea-

tion outside of the rotor plane in the x direction according to the trapezoidal

flux law.

The following two models will be discussed for treating the longitudinal vor-

tices for the blade n =N. - -lpreceding the target blade.

Case I: Vortex arrangement just as for the blades n = 1 to n = N - 21.

Case II: Just like the model used for the transverse vortices, the longitu-

dinal vortices remain behind the target wing in the rotor plane x = 0 up to about

1/4 blade chord. They are blown away according to the flux given by equation (1)

in the x direction (Figure 6). Using this concept, the velocity field induced by

the free longitudinal vortices at the 3/4 line of the target wind x = 0, y =

itr cos (90 + aL), z = r sin (a'n + cx)l is given by

-- -( ')-:....
R1 2 . ''

il ~,,( , f + [(r 8 <a + ±) - 8 COB (9o + ±))2 +

Ii + (r sin (po +.a) -- 8 sin ( 0o + ±) - k* )2 ] - 3 12 [r sin {-o y) - k, os (?- +' )1 dW d8 e, +

[(x)2 + ( c ( 0 + s-S( 9 0 ))2 + (8)
,, ,9~ [(Xo)79O (r Cos (97 + x) 9 Cos (,, 4 2~o

o
_, (8)

+ (r sin (0o +- x) - sin (% + -1) - k,t i)2]-/2 [r sin (a -- V)--* V Cos (90o )] ee +

+[( sin (9oo +q ) r sin (900 -) k, ) 0] sin (9]o i}) M O-

' +[··.(r Cos ( + a) 8 s(To + T8- x + c08 (3 l Xe} d/
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with' = (O - 2 ) ko (8, 9 + ) , V)

1 N-2. ar(8,9 [(xn.) + (rcosO + C- C0 - a cos ))
'· . 0

+(rsin(qo+-k)-8sin(q+-y)-k*p)2a]-Bl{[rz rsin-- N )_ k*-V pCo z n) 

(8 sin (pn + V) -r sin (± + a) + k* V) a - sin'(9 n, + p) x. eV 

-. (q'n ±v')).-N-· + coe. 

with xn V- ko (8, r + , ) ± ' . /288

n. + -r oo8o ar(c8 9o ,0 +v)-s + c os 2 C 

FL-1=;J. T
: n J agg [( (T N p)),

288
+'(rsin (qi ± ')- 8 sin'(o - N+ ± )-k* ] X

wt il . 4-78' J', (o s(o+9 ) -o±q. Case o sI
+ 01 [( cos +

- - N +q ) |Ce

n Case In be taken directly from Equation (9).

The angle 5 !{NIj in Equation (10) is defined by the singularity of the integrand

N N

of the first in tegral. The latter becomes singular when = and 8 ] 

Accodg t in ition, we then have

,ccordig to definition, we te have ro
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? COS ((n + oN), s-*(V I C-os (W- (11) 

r sin (N ) + s11

This specifies the velocities induced by the vortex system of the rotor at the tar-

get blade.

Finally, according to convention, we will call B the flap angle of the blades

and Re is the distance of the flap joint from the rotor axis. w(r- Rfl)lis the

flapping velocity. Also do is the inclination, angle of theiprofile skeleton line

at the 3/4 point with respect to the (r9)}axis (Figure 7).

The flow boundary condition is (Figure 3):

[o) r + wo Cos (0o + CA)] tan 6o(r, 9o) - o -+ (r - RA) a, d

= ur + uL + UQ - (Vr + VL + VQ) tan 0o(r, 9) ;(12)

(R < r < B0; 0 q,6 • 2=) (V = - vsin (o + o) + w cos (ro + a))

After substituting the induced velocities, Equation (12) results in an integral

equation for calculating the blade circulation.

The two flux constants k00 and k01 must be determined from an approximate cal-

culation according to one of the known simple theories before Equation (12) can be

solved. It can also be estimated. These values of k00 and k01 must be tested after

solving the integral equation and after determining the induced velocities. If

necessary, iterations must be performed.

3. INVESTIGATION AND TRANSFORMATION OF SINGULAR KERNE L
"

/289

PARTS AND BOUNDARY CONDITION INTEGRAL EQUATION

The representations (3) to (6) and (8) to (10) of the induced velocities

already contain expressions which occur as kernels of the integral equation accord-

ing to the boundary conditions (12). Therefore, we will not write they down again.

First of all, we will give a summary of the structure of these kernel compo-

nents and will then develop a suitable solution theory. We must pay special

10



attention to the influence on the circulation distribution of the fact that the

considered blade penetrates the rolled-up free transverse Mortex of the preceding

blade.

First of all, the bound vortices according to Equation (3) as well as the sums

N-2 N-2 z

according to Equations (5) and (9) only result in continuous kernel components

in the integral equation. Therefore, they must not be discussed.

For the velocities v('),vpN-'),v¶),v(iV-i , the integrands of the second integrals

are always continuous. This is a result of formulas (4), (6), (8) and (10) and is

a direct consequence of the physical vortex model used.

This means that the first integral components of the last mentioned velocities

must be investigated in detail. They only contain an x component. These will be

given the notation (u0)n, etc.

a)

We will consider the target blade n = 0.

The denominator of the part (u?)+!uu))l vanishes for prescribed target point

coordinates r and 90 + m(r)]when s = Sqland ' = E-. The quantities 4S6 and P61 are de-

termined by the following equations:

.r cos (9qo + o) = so* Co 0(Qo + 'o) )

r sin (o + oa) = So sin (o + 'o). + k*, o. (13)

We will develop the numerator N and the denominator D of the integrand of the part

(t(°)+ u'))j in the vicinity of the point (13). We will use the substitution

'i = 'o + X, 8 =+al

after some elementary transformations, if third order terms are considered in the

numerator and second order terms in Xl and a are considered in the denominator, we

find:

11



D = [ 2 +o 2aX k* sin (go +Y.,o) + 2. (so' + k2 + 2 k* s8'cos (g, + VIo) -7 (14)

X- 80 k, sin (pqo + oP/) + a Xa (8a + 2. k* co ((go + TY))]3/2 I

In a similar way, using the relationship (13):

r(9,N = -oa+ .o[+a(s) ±+ k, cos(q + ')) a . (g*+ 2 os (+ ij- ()
[x (80 + k* Cos (QpO + two)) - X2 k* Bil (po0 + tYI)] *

We will now introduce the following abbreviations:

Ao = 8*2 + k± + 2 k* s8 COs (Qos + ±Io) Bo = k* sin (o + /i ;o) (16)

z = (80 + k, cos (9p0 + 1 0))z = A, - B 

In order to obtain an overview of the values of 8*j and VIgl as a solution of the

Equations (13), we should consider the fact that in the limiting case k- O we

have
so = r ; -o- = a .J- -j(17)

If we now consider small propeller moduli k,/Ro,, just as in the lifjting line theory

of the rotor and if we assume that there is no reverse flow, then we have

r + k* cos (90 +a) > Oi for all blade target points. If we also consider the fact that

is1<l l, then it is appropriate to solve Equation (13) in the linearized form. We

obtain

k, r aOsin (q-0+a) . ra_
80 + -Ccos(ao + r or+ k, cos ( oa) (18)

It follows from (18) that

J0 = ±r+ k cos(p' + a) - a si a) terms (k2,a2).j

which means that when r.+ ±kcs(o +-a), >.Oj, A0 > Ojwill remain in effect.

The singularity produced by the zero s- s*, =- -tJin the denominator of the /290

kernel component n = 0 depends on the instantaneous blade position gj . The re-
(3)

lationship is relatively complicated, because values of r and ?pol]exist for

which so >-R0 or '0 < R- . This means that the singularity disappears for short

time intervals (that is for short q-|iLntervals)i.j This is because s and r can only

(3)For oo+a z3J/21 and r< .J as well as for 9o+ -d/2j and r> R,

12



take on values between iqjJ and 1i' .

The solution of integral equations containing such kernel singularities be-

comes very complicated and laborious. This is especially true if several singu-

larities of this type occur and if they are of various types.

We will find that such singularities are also contained in the kernel part of

the blade n- N -lj. In this case, an exact analysis is even more necessary than

for the blade n = 0, because the value of k,!/,_l]jin Equation (11) is considerably

larger than that of k .VQjin Equation (13) or (18).

Therefore, it seems appropriate to carry out the analysis of the part

!(uV)+ uT))] using the assumption k* = 0 based on no reverse flow along the blade when

k* is small. In this case the kernel singularity is given in the simple form (17).

From Equations (6), (8), (14) and (15) we obtain the following lucid representation:

8.t8,9'o±0 + x)

Part :(u0) +u i4.)) = 4 j r
o
2 + 82 

-
2 r 8 coss cos i 1 ( X- 2) -

- ale r sin X]-[(r _ 8)a + ra X3]-3/2 (1 + 2 ( X )(2 + 8 ) XXa['(, 'q 2+7o+ X)+ i2 f] - [(8r 8)a2 ] + x) r( X }X r (r- + ) I

r(r-)-(r-8) - r d d +

a8 691~~0%

La43E Ri0 +j,, a ,? + Z) ( ] (r-318)( 3 XI r (r- a8 )

/[a'(s.ob X 2 1 a ar(s,9o± Xf) 1 .-V r(-ar 2) (r or)i r 2 X 2 r )X dXa -

+2 1 J r 81 ar(8, 0 + ) 2 In r l a2r(8, o +a) d -

*a '=' +s2 n r a' + J2a a o

.i

e Ro

11f a3r(, , 9i, ds
B~I~c8 90+a (r - 8)' I

+- as s r s'
Ilr~~~~~~~~~~~~~ 

(19)

13
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In formula (19), the integrand4 of the first double integral is continuous and

vanishes at the point 'X =_0and s = r. Using the integral formulas (74) to (81) from

Section 7, we also find that the integrand of the second integral with respect to

s takes on the following value for s = r

1 1 al'(r,%P -+i ) 2 al' (r, ) 
+

O( c))
4~z 2r ar ) / a09

This means that it is also continuous. The remaining terms are partially trans-

formed by means of partial integration, so that the singular kernel part in the

last line of (19) becomes clear. We have assumed that

(Rp, o,) = r(Ro, o) 0j (20)

[See Section 7; Formulas (82), (83)].

b)

Leading blade n=N - i, longitudinal vortex.

We consider the Case II according to Equation (10), because in the Case I the"'

integrand will be continuous anyway.

The integrand of the part (UN-j1). in the Case II becomes singular for the spe-

cified target point r,9- + a(r) I when s _ sh* l and V = Y'N_l]according to Equation System

(11). In the vicinity of this point, the denominator of the part (u4v-1'))lhas the /291

form (14). It is only necessary to replace 8'o by s* 8l, VYo0 by ?fN4 and (I + Y9o)j

by (9o - We also find the following for the numerator

, ,,9--+ l . ,[ + (21)a.o N ( 7 (... ;) (21)
If we assume that at the consiint there will be no anomalous

If we assume that at the considered target point r, %-+aithere will be no anomalous

concentration of free vortex elements caused by vortex deformation, then the values

s- =a 8-/1 and W -- Y ljwill describe an isolated singularity of the denominator.

This means that dj as well as J must vanish (V !-_(-I'FX; a -=-8_I + a)'. Since the

main part of the denominator has the following form for small al and Xi

14



[1 s.in - + Y N- lX Cos (f0 N ) ,

+ [8N - -008 -n+ + + N-I a + k 

then the following determinant must satisfy the condition

8sN-1 * Co(99o - n + N-)> 0(22)

if the zero point a =01 and X = o0is to become possible. The relationship (22) is

not important for the further transformations.

Equation system (11) can be solved for small k* values (i.e., without reverse

flow at target points) using a linearized approximation, if products of the type

(s-l -r) (_ ----a) are first ignored. We then obtain

k, r( + )-c sin (k* ++) Cs 2(O _ · )X (23)
r + k* cos( or r + k*cos (9 + o)

The approximate solution (23) is of course less accurate than the corresponding

relationship (18) for the blade n = 0. Nevertheless, (23) can be improved by

means of an iteration. Since because of (a + >)2a the angle P-NIjis considera-

bly larger than el', it is no longer permissible to ignore k* (different from the

case of the blade n = O0) when the part (u(N-i))j is transformed or is set equal to

zero.

Using the abbreviations

A- -_ 1+k$ +2k* ICos (o90 - T ,

2n
- I k, sin - - 1

N .o-- + T' N -I ;
-1 (*-1 + k, os ( -- + = A - B

we obtain a formula which is similar to Equation (19):

Part

(X1 , )) = J J t··-~-r Cos (90 + 8s + YN Cs+ X)) + (24)4 R1 - (L\ N' (24)
14 - .v-x

+ (r si n (so + a) -8 sin(PO -- - + k N-1 + )X)) ] X

15



x [ sin ('o +a) os(o - N- +i Y_ + ) - rcos ( +*) asin ( + fN- + X -
N

· ( 2 (8, - + _I + X)
4* (NjXCs' n Jr a +X 2n-+

N .dx ds --.

2 BA_2 1 1 1 1 _oN-13 3 8yBN aN I |aI N YN1-1) (24

- { fN 2 AN-1 ( 2 31 ) 2, Aw BN- , N x
. 1c'q 2 orq2X B--r + XI A)-1

+ 2 n1 + .(

' 1, 1.1 8,A 9O --A-+ (a, + '

N

;x (X ' 8, 1- - XB)N--I) dx +'

; (. s ,,,_, / -- k-24/
-',r q~o -~- + '/,5: _ a . :

2 v-AN I AN1 N_ ' _Infrml (4, h frt obl negahsaotiuusitern. lai' 'g 

i....r f nrm (7)to(1)fo, weasidtah, .g of
2BN-I i: 1 - .,

2 i.-I .al -
;

N-i ) _ 8- -I T

+IA - 1( In + a1+

-t· 2z ad Li A 0

intea formulas (7 t 8 Section 7, w as i t t

1 a(s qN a-+ a 

) ·

AN-, In I_ _- 1 6I1 d 3'
I 8I± -,) - 8;

In formula (24), the first double contegral has a continuous integrand. Using the

integral formulas (74) to (81) from Section 7, we also find that the integrand of

the second integral with respec1 to s takes on the following value for 6=8.7

216 3 B'_- - A -1 B 8P v1'jBy-1(3,5AN-j-AB'_jl

2n ao' dAN-, VAN--,

The last term in Equation (24) contains the only singular kernal part [see also

formulas (82), (83), Section 7].

16

'/292

)



c)

Leading blade n = N - 1I, rolled-up transverse vortex.

The part of the velocity component (uN-1))I to be investigated consists of a

rolled-up tip vortex and a hub vortex. Both have a similar structure. We will

therefore discuss only one integrand and will drop the superscripts (0) and (i).

The singularity in the integrand of part i(uN-I))l is given by the equation system (7).

The values of rOi and ~o[ must be calculated from it for prescribed 8s_l1 and 9ot'

We will develop the denominator D and the numerator N of the part (?Nv-/1))j in

the vicinity of this point. We will therefore set

V - o + X, r =ro +Q, a(r) -ota +x eJ

and consider only third order terms in the denominator. In the numerator we will

only consider second order terms in'Xz andel'. Considering (7) we find the following

after some elementary transformations

D = i+e.(l + rue 2) + 2 e X -l (in o - o) ---in (Mo + s) -

I ro o- -co - k, ro a cos (o0 + a)]+

+ x2 [s1 + ±2 k2 8g 1 cos(-n + - o)] - X3) ki &-1 sin(,o n ± ° +

+0[ ( e8N o-- Cos (o- O) r s N °] e X (25)

X, N [ I Cos(- On Jo)k+ cos(O + A N) "_2 a. sin(O- N t - t)-

and except for rl (sign of the tip vortex) /293

=o +ko+. Y)o s (o +o,+ s-i,,
_

in 2 +

s;i 2 X [a8N-I -1 + kt C08 (9 f -- ±+ Vo)] - . ;o + (2

,} k* sin (·+·,1 1 F 21 \ 1
ksin( +Oa) + e To O8 0 co' (o +)]- (26)

sN-1 ro xo C os - to -· )'

17



We will now restrict ourselves to small k* values as before (i.e., without any

reverse flow, that is eN_ + k*cos (90 +aO)>OJ). This means that equation system (7)

can be linearized with respect to (r_- sN-l)J andpproximate solu-

tion then becomes

k*t (aO +N ) sN- sin (9o + aO) ( n)
: C R.AV -I + 81V -I + k* cos , ;0 MO+ SN_ + k* cos (9 a) ;1 + k cos(p 1 o)_ _ , . 1 k .s .,± o

We will use the following abbreviations:

.A l -k.+ k2* + 2 k* y1 os ( - + o).; =1 r a2)

*A a- 8N1 Co N-O) + k* C'8 (To + CO) +

P1 =·8N5 Icos 4t i - O) +ok* cos (io + o));

P2 = I (to -a k* sin (o + ao )

p3 = COS ( N -ao) +- rO aO sin (PO -aO)
p4 = oosin V-. --ao -ro C-; C(V 0 -i aO)o 

~=~ i·· 2R- - -0().;

(7)

(28)

The value (AC'- B2 is always different from zero and positive. This is true

for the condition, not connected with any physlical condition, that the rolled-up

transverse vorticesl of the blade n = N - lldo not touch the 3/4 line of the target

blade but intersect it (Figure 8). The direction vector of the rolled-up transverse

vortex is given by 

dsq =.[- 1 sin(91o+ v N- j e + SN-I (08 + N + k* . d
. ... . . (P

and for the 3/4 line at the blade n = 0 it is given by

dsr = [cos (7o + a) e - r a' sin (9o + a) e, + 8in (o + ) e, + ra' co8 (9o + ) e dr

with

., d
a dr '

18



As can be immediately calculated, we

/ 04 blad then have

/t /t .. [ [ (dsr X dsQ), = A C - B;,

, / .~f/~J'g~'Jl and the statement made above is therefore

proven. Considering formulas (25), (26) /294

and (28) we then obtain the desired
Po blade 01 ' 

I--4 ; -_---_ , r( - z equation:
-d 3/1-,ine WI I

Fig. 8. Geometry of the tip and
hub vortices of the blade N - 1
at the target blade.

Part ;(iN-,))= i ocos (0o+ -- co +-CT

x i-raN 812
+ (r sin (4 + c) s- 8 s_ sin 9fo-- + 'o+ X - 'k, (o + Z) X '

[" BON N" + ,- +X) 4

+ k - (o + X) -in + + X)]X +

I f N
' + f fr( i (o - N +o ±; +)IA + X 2[ xX + 2e ' ,-V,2 x

X | + A X[ + 2 B e + c (29)

x [-/AC-B2+e , -, P, -(o' (P, 2,, ro aP, + ] X(8N.-1 X

._ ( N, ))] 2- ,, ( N )

A [ -B2+ 2 rA3 (8' +9diV0I kt eo (o-N + 'Po 2 A a ]}

r-r o 1 1[2__ ~ 5-C ---'-B: b2 +-(r-ro)2 + - / I
- -

3
-i

V _-I + S,V_1 k* cos (Oo--N + P° X
'2 : t A CB2 b. + (r - ro)2 V~ c9 - '

x In (r, 2 7c - 1,

Some explanation of formula (29) is required. The integrand of the first integral

is apparently continuous. Using the integral formulas (74) to (81) from Section 7,

we also find that the expression in the rounded brackets {} )takes on the following

value for =°:

19



I 2;r 1~B2 1_ _ 8N- 1 P, B

N+ Y') [ 3(/AC - B2 2 VA C)- B2 VIA (A C - Ba) VA

H 1C l B A,( (r, B )A V '/As pCo-o 2, V e -- +Zo .+.P A C - B+ A C - B2

X 8- I + a - +IV'o)C) 9B2 A0 + l* sn 9 + P2 Ms N · (A C - B2A A-/A 7 2s)' ---

X( B) 1 B 05)±1(o,5N ) B _9_ +o

In the last terms of formula (29), the singular expressions - and in e'l

respectively, which are singular according to the potential theory, have been

replaced by b+ In where e= r -ro . This is based on the fact that a

rolled-up free transverse vortex behaves like a RANKINE vortex in a viscous flow

and a finite (even though small) core radius, and does not have the behavior of a

single vortex filament of -potential theory. Sucha velocity profile cad be |

quite qell approximated by

e [b2 + Q]-l] with b* as the core radius. (30)

Equation (30) is very suited for further treatment.

The part of Equation (29) corresponding to -expression (30) gives a good /295

description of the velocity field, when the target blade n = 0 penetrates through

the rolled-up tip and hub vortices of the preceding blade n = N - 1 .

If the core radius is small (for example b* -0,056Ro1, then the function (30)

becomes discontinuous almost in a step-like manner. However, we must consider

that according to Equation (27), depending on the instantaneous angular position

'(P01lof the blade, it is possible to have value ro0 RoJas well as ro > 10 I and corres-

ponding to this r, 2Ritland r, <BtRl. Since the -blade target points are restricted to

the range BR < rS R0] , this discontinuous, step-like course of the function (30)

only exists for re 2 ,R]and for r'074. Only then do the rolled-up tip and hub

vortices of the blade = N - 11 intersect the blade n = 0 (Figure 8). These pro-

perties must be considered in the solution of the integral equation derived from

the flow boundary condition (12).

20



F I-rt ax a vl

I i

Fig. 9. Induced axial velocity
for penetration of a tip vortex.

1it
21 r'ray (S, 90 -ao) 1 ds

- Bf,- _ _ _ _ 

4. SOME INTEGRAL EQUATIONS

a)

We consider the integral equation

- r - ro(q,0), 0) 
b2 + Lr - ro(To, ao)] =

(1R, < , !< lo ' l
o .

r
0
can take on values which are larger than R

O.
Using the transfoi

1/2(Bo - ,)bj and

!i -2 (Bo + R.) (Ro - R) Cost ; r =2( + )- (RD - Rit) cos ;
2

ro=-2 (RD +'R.)-2 (Ro -li) cos o, (r, :' o) 

(31)

rmation b* =

= I- (1R + 1,)+ (Ro - ,) coslh 0o,

,(ro > Ro)

Equation (31) takes on the following form:

2 +cos h 1 1r
b2 + (c -s +cos 2 

+ cosh = o#

(O - ;

ay (r, o,+ N) *l sinoy (cTao+)a1) dT ( R° R cT 08 T - Cs08 ' 3

Ro- R, (32)

0o_ ; o* > 0

In Equation (32), we have - cos001 for ro Ro1J and Cosh 'ol for r > o -

sition point -o =, Band :#0 = 0both equations agree'.'

At the tran-

Using the integral formula (64) proven in Section 7, we first find the follow-

ing solution for the integral equation (32)

ay (T, q9,o+0)IillT - (a,) b 1 +sin2. [+
a2 s [1 ba1+ 1Q4 2 +i- b -s r

-
o

-- 1-
('r first undetermined)

5 = cos Vl for rO <•1 o ; =. for r > 1-, 2 C- -CO~h O1r~~~~ rr ? (33)

21
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The values _i1 and ,* depend on the instantaneous angular position T0, just like

r Equation (33) can be looked upon as a linear ordinary differential equation

for the desired function y], as far as its dependence on T-Jis concerned. It can be

immediately integrated using the known formula. The unknown function )1 ( !J is a

constant with respect to the variable 4) as well as the integration constant which
occurs for the integration ofthhe differential equation (33) can be determined from

the necessary condition (20); i.e., y =OI for T = Ojand Tz- '.

After an elementary calculation, the following solution of the integral equa-

tion (31) and (32), respectively, is found:

[+RI B [R -11 TR]+ 1/2t

___ _ 1 1cr_) I__COS T dir'_ 2 2 T4-Bde ' [ +, - E + 1/ + V]/2 + (CO- t . + si

f r [Z,+ R, o1B+R, ' -J RlR, CO/r' dir' 14±11: , 1/2- O
- n,-, ,t -~- --Jr fb + (osr

0· 1

where

E = cosf0l for r R, E E -cosh * for ro Bl. (34)

Abbreviation: /296

Ql (S2 - 1 - b2 )2 + 4 S b2 |

I/(7o,oa)J is an arbitrary continuous function.

In a similar way, the integral equation corresponding to (31) can be solved,

if r0 is replaced by r, (ro,m,)|. Then we have S = cos#0/for r, _ R,] and H = +cosh 0

with 00 _ O0 for r, • R,.I.

It seems appropriate to determine the order of magnitude of the solution (34)

obtained.

After this, when the formula (34) is used, b* must be looked upon as the core

radius of the rolled-up transverse vortex. Measurements [4] have shown, that the

core radius of rolled-up tip vortices of a rotor lies in the range 0.04 RO and

0.07 Ro. Together with b-'= l/21(R,-R)b this results in b£e10--.]

Since as a rule (R, - .lt)'(eB0 + )' < 1/2] , we also have the following good approxi-

mat ion:

22
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f¥V Bo - R, 2 B0 - B, ./0JV R/XOR
1

cosT'dr'k YR°+-R~ ( Z RO S R )(35)

We will distinguish several cases when estimating the order of magnitude of the

solution (34) for small values of b.

First of all we have sin' 0 > Vb'l. Then using = cos OI we have:

RO+ R · ,B-112 1/ (Sin + )in T 1-

(Ro R )bf+ (CRo-- /OH ) (36)

Ro + n ,
JR 0 - I?-cot)l/b + (co t' - cos o) c

The dominant integrand in Equation (36) apparently has a steep maximum when Ir' Y0J

and to a good degree of approximation(6<! l]we have:

. / (110 
'

1~ CO8 2 si )oI. 8in Oo) 12 , (

0 ., -- is i

- , .

0.-b + +sin I t' R Bl /

( 2 sin/ b(1 + 1 12 (B-os +| (o arotan I j 

0.-a

Using (35) and (37) we then find the following estimation from Equation (36)

Formula (38) shows that y-.O0(i) also holds for bl-O . In addition (as can be

expccted from the structure of the integral equation (31) we find that xi .is posi-

tive for r>'~and negative for . . This is clear if we consider the velocity

field induced by a rolled-up tip vortex (Figure 10).
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'7 .' .

a: ? bw)~s 1 c') -
a, C)

Fig. 10. Various positions of the tip vortex of blade N - 1 at the target blade.
The circulation fraction y produced by tip vortex N - 1 at blade 0.

Let us now assume thato, o=nIor *' - o . Then using = -J: /297

(R, + _ 1cosR, 1 I R 08)1Ro (2+ b _ / sin2t') dr'

:bJ \R 0 - R o-R i- 1·' s+ (e R s ' (+ 11)'
0

Considering relationship (see formulas (65), Section 7)

' /( 1 Bo-- R (sin't+-l2b),d V_(2 Bo--R, ' Bo It
2( 1 +Ro + /)b' b+ (oCOST + 1)'V 2 R'±R t'I-1_ R (40')

as well as Equation (35), we obtain the following estimation from (39)

y ,1/b -(RI R- _ cosr) II .R,,_+ R, _ C_) 1/2 (2 b + sin ',,) da 
,- b Ro - t ' os' b' + (co+,' + / ()

for

<,Oo, Oo, o O =O.I

From the representation (40) we find fyoO(l)lfor b.o
l
· It is understandable

that - a is negative, because in (40) we have ro,=-i that is, r<r] · Finally, we

consider the case sinh"a'>bSl and sinhe ' co'shJ . This means that the rolled-up

transverse vortex lies at a certain distance outside of the blade (Figure 10).

From (34) we obtain the following for b- o:

_____ + - CROT) -/2 Bi R J'- cosr) (irh +st 1 -x'r (41)
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1I 1Ro- B - Ri Ro + o, 112 (sinh2 #0* I- sin'T')T dr' (41)
.... 2 R0 + l g J T RBo.- J9 (cosh #* + cosTr')'

As rO*J increases (that is'as the distance between the rolled-up transverse vortex

and the blade increases), from (41) we find that .r_,-pas should be the case. This

is because (8inh' * -F sinr')' (cPshl* + cost')-l becomes independent of ~jj and therefore the

integrals with respect to Tr'} Lcan be -approximated by (35).

This then concludes the discussion of the exact solution (34) of the integral

equation (31). The integral equation corresponding to (31) can be investigated in

exactly the same way where ?r(qo,X)J is replaced by ro(bo,%o)l.

The derivative aylaool of the solution (34) with respect to the angle qlol, which

plays the role of a parameter, remains continuous at the transition point Lro=-iOI,

Oo'= n
I
and OD = ol . This is true because drofdIrJ is continuous according to equation (27)

and also we have the following abbreviation in (34)

1 12, dro
ro - (R o + R) -2 (RO - R), it follows that d- R- dJr;

This means that ay/aIja remains continuous in the range o _i To5 2l.

b)

We will consider the integral equation (< < Ro0; O0 < To2):2

I F(r, p'

I a

P,a) + 2 ( n , _ + )/(P. °) ±r - ro(,a o) -

1 r[ar(8to+a,) 1 di
- lf -as -, + 2co) ( T -- - ~ + '

f I

ar8, r. /X +2~~~~a0 , 
+

, +N)Z+ /*J (w° N + ° + X)Qt~ofix~ +: 2 -f i3S,(+9)r, P 

+ f r(9( +(, o+, X) Q(r, )a (8, P, 0,)K1 (f, 8, 90) 

ad _a,8 9' ) . '

+ alf (8, +) K X(r, ,, 9o) + ar (8, 9o + ), + x)
+ J( ar (S. 0 + °. +a X) (r,8,9 0, X).+ + ) (r, 8, X9o, X) d.,
(x)

(42)

/298
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The structure of Equation (42) must be explained.

First of all (42) has the integral equation (31) as a part. In addition,

there is a partially singular core component which has the new form 1s_-s-l(r, o)]-l_.

The expression N'_l(r,ol )Jis given by Equation (23). This means that values

-_ 01 as well as sI < R,,8_> Ro are possible. The core component

mentioned above is not singular for the latter case.

I',J is a special value of the desired function SJ. When applied to the rotor

flow, we are dealing with the circulation of the rolled-up tip and hub vortex.

We will again discuss the definition of ',|.

IlIto J C41as well as Q are continuous core components of the integral Equation
(42) for all variables. ()Iis a symbolic notation for integrals with respect to

xi for various possible limits. Of course their existence is assumed. 'Ol to 051

are phase displacements with respect to To-'. q(r,qo), *(r, o),f(~o,?o),l F{r, q,_O)} are pres-

cribed continuous functions.

For the solution of Equation (42) we first carry out the transformation

s = (Ro + ) - - i (n - co' ( = q- 0)

and use the trial solution:

F(,9, 90) -R 9 -£ , N + P -- +n) (43)

Let Y(i,0o)l be the solution of the integral Equation (31). The function y is there-

fore known and can be immediately determined from Equation (34). In the case of

rotor flow, y characterizes the influence of a transverse vortex which is penetrated

by the rotor blade on the blade circulation. Since y(O, 0-) = 0, j(, q9)_ 0) , y can be

written in the form of a Fourier sine series (even if there is a relatively steep

function for a corresponding number L of terms):

The other) trial fA(unc) itin A (44)

The other trial function !r]is essentially determined by the remainder of the flow

field in which the blade moves. It is also necessary for F*Ito vanish for r = 0

and T = 7 and will be assumed to have the form of a Fourier series:
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rT(T,po)= . Z a,,' ef, r'esinvt .
,,=--.,=l (45)

(O--- -r a , < 0 : 2a2).

We will use the idea that the rolling-up process of the free vortices occurs accord-

ing to the following law. The vortex material in the range r > O + R(jmakes up

the tip vortex and the material in the range r < + Rmakes up the hub vortex.

Then we have(4)

rR + {, -r ) j

If we approximately set po =(2n)/N
l

, then from (43) we have (,0 ignored)

r,(9¢o) T Fm(q) /(9o, ,o) y,' , 2o) + * (, ') i9o

or

(46)

1 - (o 0 ) r (j2 To)

According to our estimation (38) we have y(n7[,Z9) < 01 and because we can also

assume that ? >'Ojaccording to Equation (29), the denominator in (46) will not

vanish.

Before substituting the trial solution (43) to (46) into the integral Equa- /299

tion (42), we will first give some formulas for the rational calculation of the

singular core components in Equation (42).

First of all, we will perform the following transformation:

8* R- + 'IOR - Rt.82 1 P,
+

2-Roo for R S_.. 1_5 Ro;

o_ + Ro ,oo R o - RO +[ffor a,_, o i )l (47)

2 for SN*-1 B1 R*fo N-I

=RO A ·= .- e-, RL ,;

(4)Basically, another, rvalue can be used to determine a/2lin place of .'

C-
27



Considering the integral equations (66) to (68) from Section 7, we then find

, f r ', (s , F(oo T + a) + R,+(e a)2r+

* +f{. rfar t(e o+o) I1 I de'
' +2nd\ ,@8 +2rr*(B 0l0 1)tr-s= 8

*. .. (48)

= 2 2 apve( vSRIev _1 Bcosinv + 1 2 v | ) (B)Bsin VT sinTdTJ.

:I . (48)

2an a Ffl8I) dN-l8r' o) 2#=2glr2:la~ti~ecoo a +

-1 )''; 

-1-m2 2x_;v- o\ t1f9 8-N2t + Fv-1 ,o) X

Z art sin,~a 

I 1 . .Ro_'=,.",,.-,-I- - : ~ '- o - 4 F -I + -O 4n

coI

_X (0- )(9P. P!o - O) (49)

In Equation (49), the upper sign in the bracket expressions hold for

n8N Rthe middle one holds for e < R and the lower one holds for

a,- 2 (5)In the case of the rotor flow we have for

O:5 T ?+ x c |and Rti;8N_1<R, and * R and for-. - ) I>-' )"
9,=p0 + a < 2 and R < _ R, and _ 2 are possible.

[See Equation (23)]. The transformed variables .,*|then lie in the following

ranges according to formula (47):

0fP+caw : O!EgI5(To) and o 5$g <t,*10);

=<fo+xln<2 : 6(fo) t and ° 0: t(o)

5 The values in brackets transform continuously into each other at the transition
points = 0,* = oand = , Olin a continuous way. We have _ -s*(r,o)j . The
derivative i/49 , in (49) must only be carried out with respect to the explicit o-l
values but not with respect to the phase displacements 'PNl1undPW1 which also depend
on 1F. (Because Equation (46) is also obtained with the assumption holf( 2 )/N ,
that is, independent of n )o.
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with

C o= o ( + RA - 2 8* (R, )

1(*) = arcosh (a r ° + * 2-8 (R, PO))

Ro + R, - 2 8*_l(Ro, 0o)
(o) = arc coh \ ( o R o;

Be -- R;
$,'(p) ='arcosh (R- + - 2 d(Bo, xh)

The trial solution (43) to (46) for the

in the following clearer form, which depends

a,,
I
which must be calculated:

I.e, g)~~, 91)=I~rA . :Aln .(~ I i -(

Mt, A: s
r1(8,Po))= (r,TO) = Z Z at,, ol sinvr +---

Il>-Art -l.1

,(-A) ='e, (a - a) = n.

I*(-a) = ?* (, - a) = 0.

$2(-1) = 42 (a - a) = O.

:*2(-a) = * (a - a) = 0.

(50)

integral Equation (42) can be written 1300

linearly on the solution coefficients

-ii -2 . -'+a .
+sin v , +.)J 1)

.v sm v 2 f(97as OP- t- ) 9(Ts 5)

(?· 2N + Hoto)y( _ 2N ° 5

' . [a_,., = al,,] .- I
Here y(To)] is the already known solution (34) of the integral equation (31). It

characterizes the effect of the penetrated rolled-up transverse vortex (tip vortex)

of the preceding blade on the circulation distribution over the blade, in the case

of rotor flow. The trial solution given in the form (51) very clearly shows the

separation of this solution. The remainder of the solution consists of a conven-

tional sinvT-series obtained from lifting line theory.

With (51), the integral equation (42) takes on the following form:

R.

1 /(rq 0)- F(r, P0 ,'%) f OJ[aF*a8 +F2* (8 o+ + No)] J -, +

" -. 2-- . -' n,

Z , aplo . .8ffl,(r,, ) -8
+.)( ao L . -r(r.,o) - x' i

_~ 2 a i
-t vO -. N- +V0, o ,0), 9'0 Y-, +v ° 

. I 

?(r, 'o, X) X"
i -

(52)
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+ fria-P.2 '+ o - + Vo + X) dX 1 
X(- I, 2 2) , -2 a" | , + 0 - a) K(r, (, 8,0) +

error, at is, using athe c9itione+

a O02 K,(r, 8, {I o)(rK,)} 2 - Minimum (53)O)

as, ao (52)

Here r are to s tr g) K4(re, , 9s0, X) e ait t + 0+ pi K, ds = 0a, .

a(O < i 2 n;'

It is most appropriate to solve (52) according to the method of the smallest square

error, that is, using the condi tion

(·I {l(rj, Ti))}a : Mininimum

ererIn Section are selected ta3 wrge doins. thes a rule nd at the rotor blade

using th cos m The condition (53) and the trial solution (51) leads to a

linear system of equations for solving the 2MoMlsolution coefficients a, . In the

special case L = M and L0 = MO, the minimum vanishes. As a rule, we will select

the approximation (0 Ma in order to have a uniform approximation. Someftimes, we

will also select Lo> ~I9oJ

The two singular integrands in Equation (52) are evaluated using formulas (48)

and (49). The other integrands, which are all continuous are solved using the con-

ventional quadrature methods. The fact that depending on the target point ; ',0:,

we.~ have either ~ as~_ _ RqJor s~-l < B or sNI > Rol, and therefore Equation (49)

is represented in three ways, does not influence the solution method in any way.

It is only necessary to determine how the quantity s*_'jdepends on the selected tar-

get point rf,970to. This can be done using Equation (23).

5. THE INTEGRAL EQUATION OF THE FLOW BOUNDARY CONDITION /301

In Sections 2 and 3 we discussed the velocities induced at the rotor blade

using the vortex model under discussion. If we substitute this representation (3)

to (6), (8) to (10) as well as (19), (24) and (29) in the flow boundary condition

(12) at the rotor blade, then we obtain an integral equation of the general type

(42) as discussed in Section 4b.
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It is not necessary to write down the individual complicated core components

again. They can be directly taken from the formulas mentioned above. The continu-

ous cores must be summarized in a clearer notation, as was done in Equation (42).

However, we should notice that there is a difference between Equation (42) and the

integral equation derived from (12). This is due to the fact that two characteristic

terms appear produced by rolled-up transverse vortices (that is, tip vortices and

hub vortices). This changes nothing in the method of solution. The trial solution

(43) must only be extended as follows (with -=-0 - 1/2mo - 1/2a0]

( n + to ° )) +(h. h ( -)) N 2xId+
11(8, %o) = 1'(, 9'o) = I, - p O Y0 4

+ r,(, 0 . ,[

where yol and yil are solutions of the integral equation [see (31), (34)]:

b, + [r -ro(9o. o)] =JL as + 2o(no)] -8 ( 2 +°2 ) (55)
R,

r- ro(q 0t, I) l-1 c ay(aS, Po) 1 '] i .
b, -b+[ -r(fo, ,l)]= 2 n -a + 28Y1(8 . o ) r'_82 (55()

l'Im\o) = Fib, (2 9o)[1 -°o(t'Poc)Yo(2') - f%( l Yi(2 ')]| (56)

Since'yo (nl/2, 0) < 0andy, (a/2,o) < 0o , the denominator in (56) is always positive.

Except for the small additions mentioned, the solution of the boundary condi-

tion integral equation (12) is exactly the same as for (42) and (52). This means

we do not have to discuss them further.

6. CALCULATION OF THE BLADE FORCES

The axial iK and circumferential iE forces which occur at the rotor blades

(per length in the longitudinal direction) are determined using the KUTTA-JOUKOWSKI

theorem [1], [2]. The forces in other directions can be composed of the two known

force components.

As is well known, the velocities induced by the vortex system at the lifting

line of the target blade ix = 0, = r cos o, z = r sin p0a are required in the KUTTA-

JOUKOWSKI theorem.
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In Sections 2 and 3 of the present paper, we investigated velocities induced by

the vortex system of the rotor along the 3/4 line I((x =0,y - rcos_(qo +a),z - rsin (+_- !)

of the target blade. We must test whether these representations can also be used

for calculating the induced velocities at the location of the lifting line (x = O,

y r cos o, z rsin 0o)l . We must also determine the required modifications, if any.

A review of the results of Sections 2 and 3 shows that:

In vrJ we must set a = 0 and the sum n = 0 must be dropped.

In I vi and zv(") according to Equations (5) and (9) we must only set a = 0.

In tr'l)land v(f-)l in Equations (4), (10), (24) and (29) we must set

a-=ao - at. = -a -l= 0. This is not true for the integration limits and WIJvalues

which remain unchanged. In addition, in Equations (7) and (11), (21) to (23) and

(25) to (28) we must set a = a =as = a =j = .

The above statements also hold for the second integrals of V() / and vz0)!from

formula (6) and (8). Only the first two integrals of these induced velocities,

which were already investigated in Section 3a and were abbreviated by the part

'(j() + u(°))
I
along the 3/4 line of the target blade, must be modified at the position

of the lifting line from the representation given in Section 3a. Consequently,

we will also use the simplifying assumption k. = 0. The necessity for changing

this representation is also due to the fact that these induced velocity components

become singular if the coordinates x- =0,y = rcoso0,z = rsin9 o of the lifting line are

simply substituted [1], [2]. The expressions for determining the forces according

to the KUTTA-JOUKOWSKI theorem avoid any singularity and are obtained from the

lifting surface theory. The angle Tol of the lifting vortex line is not used. /302

Instead we use
9o +lir U

where Xi is the angular coordinate in the blade chord direction. Xtr) refers to

the leading edge andIxlr(r)l-toithe trailing edge (Figure 7).

If integrands are found for X -, 0 which are integrable as CAUCHY principle

values, in singularities or continuous functions, we can immediately set X =071 in

the corresponding components. The critical terms, for which divergent integrals

with respect to s would be produced for X-* 01, can be interpretjed using the following
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integral formula Il], [2]:

I- JZ - )8) 2 ( -z_ r [XH(r) - Xv(r)]

We will have to refer to the literature for the basis of this method and the deriva-

tion of (57).

Using the method developed above, we first obtain the following from Equation

(6) and (8) for x'--.O,y -r cos ( 0 + X),l'z - r si (o + ) and] I -t_0:
R. 2a

Part (uQ0) + U()) = lim f [ra + -8 - 2r 8 Cos(x -)]- 3 /=2 X

RO , (58)
*~x-*e, P~o d dP) ar (8, O + ' '

x {r(8a° + ) (78 Cos(X - ) _- 82) + ar(8+) rsin (x- I di d8.

A simple investigation of the integrals in the vicinity of the location s = r

and ,= olshows that for part (u(4))f, we may set X Ol/directly. We find the following

clear representation

,- 2a

Part ,, =(r 8 COS 1( Q2)
H IJ [+ 82_2rsc - a(8o+ (7 8 cos - 8a) -

5I 0

-[(r 7 8)2 + r s y]3/2 r-8r- V d d8 +
(59)I r ar(s, ) r 2a8 1 . N

1 In 2 a Vf + 1/4 a2 r 8 + (r - 8" .
2Vs8 J7 - 81

The integrand of the double integral in formula (59) is limited for s = r and

= °I. By means of a series development with respect to -Vit can be shown that

it has the value

lir lirn 8 (r_ _)__ 2 _ aa1'(, o) _ 1 a82 (r,p 0)
pPo S-r V(r - 8)2 + r g, jt2/ as a9 2r ar arO

The integrand of the second simple integral over s (59) contains the known singulari-

ty of a CAUCHY principle value and that of a logarithm, which can be easily evaluat-

ed. For the part (u()) and using the substitution Y - X = il we find the following

representation for the limiting transition
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Pl. 2a i-

Part (ul)- . {[ra + 82a- 2r 8 cos ]-3l 2 ar (1 
9
0 + r) r 7 -

I~~ o+ aHI
[(r a- + r2a]-8 / 2 r(,i ) + T 2°))} d2 dsa + -

I4X a° 8 . (r +(r 

Be n~~~~~ nlm fFaj) 1 _ a(60)

I} {rs8 Ir -8i J 89o r xr 8+ (r _- )8

This last integral formula (60) is interpreted using Equation (57). We obtain /303

' R, R,

2im Ca (a, ) I rcir .2 Be 1 ar(, 8 ) 1 ) 8 +TOr ) 1 

J d8 a9 I 8 Xa .r8+(ra-) 8.. a9 ,5 Ira + (
n, Rf

aF(r, ) 97[, 4Ior) (r_-T)

,21n 4 0 + 2In2 + I
r % LIn rur X(r)--)] .

The integral on the right side of (61) has a discontinuous integrand at s = r. It

has the value zero, which is its arithmetic mean value.

We must still determine the limiting value of the integrand for the double

integral in formula (60) for s = r and 4 = OJ . The following is obtained by means

of a series development with respect to '~:

limlim ri - -= ..---.--- . + ] ( )

11 
+ ?a a-i(-,i0) l 8 ar(r, i0) +I a-r(r,-o)
2 li- ls(r _Sr 24 P2

This concludes the investigation of the induced velocities required for the force

calculation according to the KUTTA-JOUKOWSKI theorem.

7. INTEGRAL FORMULAS

In the preceding sections, we used several important integral formulas which

will be summarized and derived in the following.
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a)

We consider the integral which can be evaluated using the residue method over

the unit circle'Z- ec rTof the complex Z plane

I .rcos f T drn J (Cos T - C08 0) [b' + (cos -_)2]
0

4 Zn--1 dZ

ZEX ( ,2c) + Z 2 2 i b) (Z + -2 + 2 i b)

The zeroes in the denominator of the integrand are located at Z, = oei-

= + i b + 1V2 1 - b + 2 i b v, Z3 += + i b -b-1 -b''-2-6, as well as at the conjugate

complex values.

We find

ZZ =1; Z2Z3=l; Zl+ = 2cos ;
1 1

Z2 + = ZS -1 2 -- 2 i b.

For applications to rotor flow we must consider b21 I. When evaluating the

integral I.n and when discussing the zeroes z22zl, we will cut the complex Z plane

along the positive real axis in order to specify the principle values of the roots ()'

An elementary series development and consideration of all the possibilities

IM'-. li<,b6 with S =-±lIor ' 2I -- 11>bl with o >1, Z, < -1, S>'-ilor .2 _1 - blI with

' +(1 + b6/2)I shows that we always have IZ7_11 , that is 'IZi< -l1. Using the residue

method we then obtain

[sin nO i -eos -i ib -( + i'b)- ]
+ (cos )2 s in b ( + (62)

i Z-cos#+ib ib-' V(~-ib):.
-2 ]]

2 b 1c(Ob-(i .bV) _ 1[ bt)1.2bV(~--ib):-- 1

In particular we find the following from formula (62):

' 1 ( ,- C tsO ) s in +- b cos2

°b [b' + (cos0 8- .)2 ] 4 (63)

42 r , . - cos0 ) sin + b cos0 -
I2= b b2 + (osS)2 (-COsin-2 bC0 [b + (CO'8 s

(6)The Z plane can also be cut along the negative real axis and the same result
is obtained for I.l if the corresponding relationships are considered.
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Using the notation:2 _1- a+ 2 b--l _ ei and the abbreviation Q1=

(W - . --b) 2 + 4 z2 b2J

The combination s o + -a then results

sinquired for the rotor flow:
quired for the rotor flow:

/304
in the desired integral re-

· 1 E - cos1

1 / [I - 72 + .I1/2" VjF U +B sin'r Sodt sO + (00 .; - %)_ _i-x + + V 
-

J (osat- coo _) [bs + (oo, - S),], I + a_
0 

s in 0 I - '+b'+ YQV 
, in2 = . -.p

(64)

( <T 

In a similar way we can prove the following integral formulas using the

residue method

Ifr 26 b sin +T ( 2 ) Cos - + sin 2-
: Jfb + (co T- =-1+2 4b + b,

0 ,

n

or. 222+i = 2 -_J C08 T (coo T _ 1)S

- -1 +V + 2 ± 6b + O(b);
0~~~ 0*~~

(2 + 3 b) co0 2 + (2 - 2 b - b') sin 

V/4 bS + b4

t2 -2 - 2/ V+ O(b) .

Here we have 2 i b + b' = 1/4 bs + b4' oi.; tan 0, = 2/b .I

Finally, we obtain the following with the residue method by integrating over

the unit circle of the complex Z plane:

1 coR d r sin' 0 (0 

n J cos T - cosh O* sinh ( 0 

0 

o1 / co ev T d - (-1)' ; (0*>%.coo vr drx
COST + cosh* sinh

0

b)

From.the integral tables we are familiar with the three integrals( 7)

(66)

(67)

(68)

(7)See, for example, footnote 9 on page 29 in [1].
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using the abbreviation Q, = A S + 2 B X +.Ck.

By differentiating with respect to A, B or C we obtain the following integrals:

rfX 1 Ax±B 1 2 AX±B A
JQy' 3 A O - BSVQ8+ 3 (A C -B2)2 ; ; (69)

fX1dX I BX+C 1 2 AX+B B
JV ' - 3 AC - B VQ82 3 (AC Ba) 2m ); ' (70)

dX 1 AX+B xz 2 BX+C B
JV 6 3AC-BSVQF 3 (AC -B-)V2 (71)

fdXI dX 1 BX+C XZ 2 BX+C C

fX 5X V 1-n A - X - B- + r l (A C B 1 ((2 B A C X+ B 
fz'dz ±B+AIIQ+ '2 Cx 1 2(2AO-B2)(2B'--AC z+BC)

1A Z 2B A C) X + Bxr Ca 2 IA (A (- B) X + 

1 x' (2B-AC)x+ O '2 I Y~Vq.X+Ae+ BX+j 2 (73)

3 A (A C BS) V Q 3A V m A ' + V ,' .

If in the integral formulas above, we replace B by BaJand C by Ca5 , we obtain the

following important relationships using the abbreviation Q, = A Z2 + 2 B X + C oa :

lim 1 2. 1
,lilo-,.r. Q r ~,x ~_ ,,., r -

- °

Jim t + 1(Ac-AIn 'a

afX4 sa

J. 0. ' _ 4a .

I J v ' I ii, , 

r l et 2 alZ d 4 fB 2 1- 
linr a .

Z ¢

, iO J Vr ]: 1 3 (A C - By) /A 3 (A a- B2) V3A

r f' a Vd ' , 4n B1 .2 n

,!

. /

2 (2 BS - A C) . ' 

*~~~~~~~. ; i

.. .-

,Jo LJ VQ2,-' 3 (A G -7 B), VA 3 (AG - B3- )VA/ ; 

dr[ .I I1 c(AC-BS)1 4 2 B 4 (2 A C -'B) (2 B - A C)
o fQ;J + t 4A'

'
" -J 3 (A a-B')VA' 3 ,(AC-B-)E'jA'f ,,

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

Assuming that r(RB =I'(Ro)= o0 the following integral equations hold for continuously

differentiable functions r(q)l:

2 dr(-) In (s ' - r)d =
t, d8 

It,

- a 1(. rS
J s-r
f1Ž dd (82)
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(m-- o, 1, 2)|f [Qs]-/1 X" dX

I

= _



Isf ,( In. da - fd [8- 2 )d (83)
t" .. ...i _

APPENDIX

8. THE ACOUSTIC PRESSURE FIELD OF A ROTOR

In many cases, the acoustic pressure field radiated by a rotor is of interest.

Sometimes considerable noise is produced if a rotor blade penetrates the free tip_}

or hub vortices. This is a process which we treated in this paper. The compres-

sibility of the air must be considered in the calculation of the radiated acoustic

far field [1]. Even in the case where the flow velocities at the rotor blade are

still far enough from the velocity of sound so that an incompressible calculation

can be carried out for the boundary conditions (8) (as was done in Sections 2 to

6 in the present paper). We will use the usual linearization assumptions of flow

acoustics during the development of the corresponding formulas. This consists of

a linear pressure-density relationship. We also ignore the squares or products of

all velocities induced by the system of singularities of the rotor [i].

In this case, we then have the following linear relationship between the velo-

city potential of this singularity system (dipoles, sources) and the pressure field

1 1 am a a an _i(84)

- - at- U- - WO =W - Uo - Wo (84)

where c dt - -do,. The velocity potential OJ then satisfies the general wave equa-

a
2

0 2 + I - 2 Uowo a2l 2u
0

aa _ 2 wa20 1 all
1-\a'~ a~ i cu/ az c ax az c0l ax at c~ azat cz at2

(85)

where (zx, Y, z, ) = Z Q(r, t)d (r o- Tlonly differs from zero at the location of the /306

source singularities. In Equation (85), c0 is the speed of sound which is assumed

to be constant over the entire flow field. u0, w0 are the incident velocities

with respect to the helicopter in the x and z direction (Figure 1). The pressure

field p also satisfies a wave equation of type (85) according to (84). However,

(8)As can be determined by a series development according to the reciprocal velo-
city of sound 1/j , the formulas for the compressible and incompressible theory
only differ by terms ~l/co./. This means that the range of validity of the incom-
pressible theory is exteneed for the near field (see [1], page 117, 119).
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because of the inhomogeneous right side

-at + UO TX + w( -Z) Q(r., t) 6 (r -r) !

Equation (85) differs from the wave equations which usually occur.in normal pro-

peller theory by the fact that two principle incident flow velocities occur in the

x and z directions. Therefore, we will transform (85) to a new coordinate system

X, y, Z, i.e., we will set

x = X cosA - Z sinA; z = X sinA + Z cosA1
(86)

u0 = U cosA; wo = U sin A.

Using the transformed potential

0q1(X, y, Z, ) = 01 (x cos A + z sin A, y, - x sin A + z cos8A, ) - (x, y, zt) (87)

Equation (85) then takes on the simpler form

( us\ a2a aa a820 2 U a20 1 82 01

-, aX- + ay + aZ1 - O ax at -C at- (88)
= f(X cos A- Z sin A, y, X sin A + Z cos A, t).- F(X, y, Z, t),

The solution of (88) is known and equals [1]

01 (X, y, IZ.t) = - D X') ) dX'dy' dZ'

where (O)
D = [(X - X')l + i2 (y - y,)2 + (Z-- Z')2 pf2 ]1 /2z;

2p = 1 - U 2/C = 1 - (uO + w)/ (89)

In Equation (89), the integration must be extended over the range (O) , in which F

is different from zero. From (89) we also have

1 rCI 1, WO)( -y,4) = lu-ha · ' . z' + ') + (,z- ' d ) dx'dyd

where = (X).--[ ()I O (Z(1 -) + (z -) y') +2 2(x - x') (z - Z) '

or using cylindrical coordinates and aodt =- d9o
0
-

B4-~'"(' -, ffj-I~a;'~r'i9',9o .UO (a -a;)I -
71 fffl , ,r _X ox_,

P(x .r =f((91)

-cows 8n w' sinD) c)r' dr' d dx'ww2 ,(r sin q - r' sin p') - ' r d dx'
fi 0 'p o
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where

D=[x ~ ( co +1 -co)(r' + r±' -2rr' cos( --2')) - (91)

-° (r cos; f-r' cos 9))2 +-2 uo w° (x - x') (r sin 9-- r' sin 9')]I
w~ (r cos ~ - r' cos P,)2 +'2 co

From Equation (91) we can now determine the basic solution 9ol for treating the rotor

flow. This is the solution for a source element of intensity q(8,'X,Q 0o) rotating at

the angular velocity o and which has the instantaneous position -- k X, r - 8,

,= ,o +X . In this special case, we have

/(x', r', 9'~, 90) = q(8, x, 90) 6 (x - kA X) 8) ( - - X)

Using elementary calculations (see [1], page 110) we obtain the following from /307

Equation (91):

-(*,rO) -- X) - -- (r sin %) + 28 sin D X

x [Do ( - 0 08 c"o o + u C ) sin ( 9 - o) +

±co8W. ±8 U (xaP] co c x)osao

o+ sin ao (r c os -- s co) + k° X) co or ,
co C 81c '0 ~ " 0c 0

whereWo (92)
=O ero + X- ] (x _ -k X) -- O (r sin , -8 sin ao) + D ;(92)

fi- c--- f2 co co

Do [(XklX)2(I') c- + ( r2 + 82 2 r 8 Cs (, - a)) -

- (r cos 9) 8 cos a)a + 2 2 (- k X) (r sinl 9 - sin %0)2~coS~ Co~C

Just as in normal propeller acoustics, the pressure field p radiated by the

pressure jump or the lift distribution at the rotating blades can be obtained by a

dipole covering corresponding to this pressure jump along the blades. This is be-

cause, according to Equations (84) and (85), p also satisfies a wave equation of

the type (85). This model corresponds to the linearized listing wing theory.

In the present investigation we limited ourselves to the lifting line theory

(Sections 2 to 6). In this case, the aerodynamic force affecting the lifting line

(per unit of length in the radial direction) is represented by a radial dipole dis-

tribution. The dipole axes are perpendicular to the relative incident flow velocity

at the location of the lifting line. The unit vector in this dipole axis direction
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is apparently given by

(8 +, -cos r0) ez -c- e.2 2

(Dc

In this way, from the basic solution (92) we obtain the pressure field p radiated

over all N rotor blades by the lift distribution (that is, by the pressure jump)

in the following form by dipole formation using H(8, To0) as the dipole moment(9)

p(x, r, p, o0) = p(x, y, z, 0) = P-o - [(8 + W0 COS ' C]s X
0 0

: [8 + CVos 9 ) a a] (, n) [D ( C or +,x
+ ' os. ax co8aq, f'.

ro u2\ c 8 W'O o 8 UOWO! + ji-v% l t- sin (p -r.) + f- co c' sin an (r cos q-8 cos nr) f+ cos a. d8;

with ',= 9fnl - -f x -o ° e(r sin 9 - 8 sin qn) -+ c- (9' )

D [ 2 c2 + 8 _ COS (c- -7 n)) -

- (r cos 98 Cos O)2 + 2 u x (r sinp8 sin n)]

fl 2 S= 1--,- c- - I

In order to form the derivatives with respect to x and we obtain the following /308

relationships by differentiating Dn\ and an\ with respect to zi (p and then performing

eliminations:

a [( w O C n) r sin (p- ) +,C O 0 (,Ip- COn '))] ( 9
aO c= 0t [X (1 _ UCs: )r + ° ° (r #i a- gin a.

(9)I oe lifn 'Ug WO(e r sinwe -m s sine -o.) 1 i
ax 2 )+ Ne

X- r 1 -coi + -(r cos99 -COS an,) r sin +
1

r811 .8 co'/ .a co ~.)s + 2 x (r sin ( 9)- -8 ssi N.) ,

MIn the lifting line theory we must set X= 01 in Equation (92).
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,a [x uoo r. cOs + wo (r CoS - C8oo 0
+

)r sin + 

2 o D~roosp]Ne' (96)
: (sin ( - ) °-c-D. -r Cos9-; ] (96)1

4/ co

Ne-Dn (- a2 cos ° ±n)f + 0(1 ) +'

CO3 8 V B co 8 U0 Wo
-- 2 s sin nr, (r cosq - s cos an) - 2 X C nflc~c 0

, flc 0 c0

When evaluating the integrands in formulas (93) for the target points of the

far field (in which the radiated acoustic pressure field is of interest) no diffi-

culties are encountered, because all the integrands are continuous.

In order to obtain the velocity potential from Equation (93), we must integrate

the relationship (84). First, Equation (84) takes on the following form using the

transformation (86):

-p (XosA,-ZsinA,y,XsinA +ZcosA,,Po) -- Po] o Ua

which has the well-known solution

N1 (X, y, Z, 9o70) =

: ~ ~~~ I
:.

O(x, y, z, 90 ) -- UP cos-snl

+Zcos T, o + U (X -X')) P.] '

zcosA+zsin ' 

- J-of [p (X' cos A+ x sin2a A z sin A cos A, y, X' sin A-

0.-
x sin A cos A + zosA, qo + + x(z cosA +zsin A-X') pO dX'.

If we set

x cos A + z sin A- X' = *
WI

then we find the following clear result

-(x, -, y, z, - -), 9=o + P
0
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which gives the connection between the pressure field and the velocity potential.

If we now again consider the case of incompressible flow, then we find the /309

following from (93) and (97) if Co O:01

I 1 -' f(* +±)
ffvJ /8 +-OC(os(n ±v1)) + ()

o )2]-3 (98)
X - + (y )8 COS (',, + V))2 + z- 8 sinl (i + V-) - (98)

X [(c + no cos(T|+ U)(z - W) + o y/ sin (1p + W) Ito(Z - 1°t C08 (an -+ y )](hp 1 

Formula (98) exactly corresponds to the well-known (see [1], page 158) vlocity

potential of the linearized vortex lifting line theory of the helicopter rotor for

ok, = u,w/ und k* = w0/ol i , as well as for the wing circulation F. This relationship is:

17(s, 0 ) 0)=e /(-o -8- W co8 90o) 2 + Us r'(s, 90) ', (99)

Equation (99) corresponds to the KUTTA-JOUKOWSKI theorem. As stated above, the

dipole moment lfj corresponds to the force per unit of length in the radial direction

along the lifting line.

Since according to the solution of the boundary value integral equation in

Section 5, the blade circulation r is assumed to be known, Equation (99) also

gives the dipole moment H7lrequired to calculate the acoustic far field.
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